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We examine the effects of compressiblity on the structure of a single row of hollow- 
core, constant-pressure vortices. The problem is formulated and solved in the hodo- 
graph plane. The transformation from the physical plane to the hodograph plane 
results in a linear problem that is solved numerically. The numerical solution is 
checked via a Rayleigh-Janzen expansion. It is observed that for an appropriate 
choice of the parameters M ,  = q,/c,, and the speed ratio, a = qoo/qo, where qv is 
the speed on the vortex boundary, transonic shock-free flow exists. Also, for a given 
fixed speed ratio, a, the vortices shrink in size and get closer as the Mach number at 
infinity, M,, is increased. In the limit of an evacuated vortex core, we find that all 
such solutions exhibit cuspidal behaviour corresponding to the onset of limit lines. 

1. Introduction 
Many practical problems of interest arising in physics, mathematics and engineering 

involve the study of vortices and vortex motions. The persistent trailing vortices 
behind jumbo jets constitute a hazard to other aircraft which has led to a study of 
vortex formation by the roll-up of vortex sheets and the decay and interaction of 
vortex pairs. Attempts to understand two-dimensional turbulence have led to studies 
of the statistical mechanics of random arrays of point vortices. The observations of 
the turbulent mixing layer (Roshko 1976) show convincing evidence that the layer 
consists of a row of quasi-two-dimensional coherent structures whose amalgamation 
into larger similar structures produces the growth of the mixing layer. Several 
theoretical studies attempt to model the formation of these and other structures by 
studying the interaction of two-dimensional vortices. Yet, these studies are almost 
exclusively for incompressible flow (Saffman & Sheffield 1977; Huang & Chow 1982) 
and few theoretical studies exist on the interaction of vortices in a compressible 
medium. 

Ringleb (1940), Shapiro (1953), Mack (1960), and Brown (1965) are some of 
the earlier researchers whose study of the single compressible vortex highlighted the 
effects of compressibility on the structure of the vortex core as well as its stability 
characteristics. Moore (1985) studied the effects of compressibility on the speed of a 
vortex ring. Subsequently, Moore & Pullin 1987 succeeded in constructing the flow 
field of a translating vortex pair in compressible irrotational flow by transforming the 
problem to the hodograph plane. In their formulation, each vortex was modelled by 
a constant-pressure stagnant core surrounded by a closed vortex sheet. They realized 
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that for free-boundary problems of this type, this transformation was effective because 
it fixed the vortex sheet boundary in the hodograph plane, hence circumventing the 
need for curvilinear grids. 

Our aim is to study the basic interactions of vortices in a compressible fluid via 
a search for steady solutions of the Euler equations corresponding to flows with 
concentrated vortex cores. An infinite array of point vortices is the simplest model 
for a shear layer in incompressible flow. It is well known that a hollow-core vortex in 
a compressible medium is the limit of a point vortex in an incompressible medium. 
Hence, we choose to construct the compressible analogue of the single row vortex 
array and to study the effects of compressibility on this model. In this investigation 
it is important to identify the parameter space which will admit shock-free transonic 
flow. 

2. The physical plane 
We consider an infinite linear array of identical vortices lying on the x-axis each 

separated by a distance L measured from the vortex centre. Each vortex is hollow (i.e. 
stagnant, constant-pressure core.) Since the flow is steady and the pressure is constant 
inside the cores, the fluid speed on the boundary of the vortex must be a constant 
value, 4". Outside the cores, the flow is that of an ideal gas and it is assumed to be 
irrotational, compressible and homentropic. The vortices have the same circulation, 
r ,  such that at large distances the flow becomes asymptotic to that produced by a 
vortex sheet of strength 2U, lying along the x-axis. 

We shall seek steady solutions of the configuration sketched in figure 1 in which 
the vortices have fore-and-aft symmetry, i.e. each vortex is symmetrical about the 
x-axis and a line parallel to the y-axis through the vortex centre. Hence, it will be 
sufficient to investigate the details of the flow in the geometry depicted in figure 2. 
The equation of continuity in the case of steady two-dimensional compressible flow 
can be written as 

We can satisfy this identically by introducing a stream function y defined so that 

a Y  a Y  
pv = Po-, ax 

a Y  
PU = -Po- ,  

where p o  is any reference density. We shall identify the density po with the density of 
the flow at infinity (p,) and set p, = 1 without loss of generality. 

For 
homentropic flow of an ideal gas, if c is the speed of sound and p is the pressure, we 
have c2 = y p / p  and therefore conservation of energy requires 

The governing equation in this problem is given by Bernoulli's theorem. 

where q is the speed of the flow and c, is the speed of sound at the stagnation 
condition (i.e. when q = 0.) 

We seek the solution of these equations in the computational domain depicted in 
figure 2, which shows a sketch of the streamlines. The point S corresponds to the 
stagnation point where the speed of the fluid q is zero. The curve connecting points 
A and B represents the boundary of the vortex. The vertical lines from B and S are 
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FIGURE 1. A sketch of the problem in the physical space. The closed curves show 
vortex boundaries on which the speed is qu. the 

v = o  v = o  

B 

S 
A u = o  

FIGURE 2. A description of the computational domain in physical space. 

assumed to extend to infinity where the velocity of the flow has a single speed, q, 
and phase direction, 8, namely, q = qm and 8 = n. On the two vertical boundaries 
0 0 1 4  and B-002, even though the speed of the flow varies, the assumed symmetries 
determine the phase angle of the velocity vector to be 8 = n, whilst on the symmetry 
line S-A, the flow angle is 8 = n/2. Even though it is possible to proceed with the 
solution of this problem in the physical plane, we instead transform to the hodograph 
plane where the geometry of the flow simplifies to a rectangle and the governing 
equation is Chaplygin’s equation, which is a linear equation for the stream function. 

3. The hodograph plane 
3.1. Chaplygin’s equation 

The velocity potential of an irrotational compressible flow satisfies a non linear 
partial differential equation. When (q,8) are taken as variables, the equation becomes 
linear (Von Mises 1958). This leads to a quasi-conformal map from the physical 
plane, (x,y)-space, to the hodograph plane, (q,O)-space, which we shall summarize for 
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completeness. Along with the stream function y defined earlier we can introduce the 
velocity potential 6 and write 

and using methods of complex variables it is easily verified (Milne-Thomson 1966) 
that 

dz = -f (dg + i:dy), 
4 

where z = x + iy and u - iv = qeie. It follows that 

(3.1) 

Cross-differentiation of the above equations then leads to a compatibility condition 
akin to the Cauchy-Riemann equations: 

and 

These are the equations of the hodograph plane. Eliminating 4 from equations 
(3.4) and (3.5) and noting that, in the hodograph plane, the density is a function of 
the speed only, p = p ( q ) ,  leads to Chaplygin’s equation, 

3.2. Scaling of variables 
We next consider the image of our problem in the hodograph plane. Before doing 
so we scale all speeds by the speed of the vortex boundary, 4”. Furthermore, we 
shall scale the stream function by the strength of the singularity at infinity in the 
hodograph plane, which we denote by d. This along with our earlier choice of the 
reference density, namely p ,  = 1, leads to the following relationship between the 
length, time and mass scales L’, T’, M’: 

L’3p,M’-1 = 1, q,T’L’-’ = 1, dL’-2T’ = 1. 

At this point we have completed the specification of scales for our problem. It is 
important to note here that the distance between the vortices L has not been used 
for scaling and that it shall be determined as part of the solution. 

The use of equation (2.2) allows us to express the speed of sound at the stagnation 
point as 

where a = q,/qu and M ,  = q,/cm, the Mach number at infinity. We shall define 
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FIGURE 3. Computational domain in the hodograph plane. 
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f l  = qt/2ci and hence can re-write Chaplygin's equation as follows: 

q2 [l - b(y - 1h2]  Yqq + 4 [I - f l ( y  - 3h2]  wq + [I - b(y + 1)q2] YSS = 0. (3.8) 

3.3. Thejow in the hodograph plane 
10 aetermine me image 01 tne now in me noaograpn plane we must return to 
figure 2. Since at the stagnation point S the speed is zero, the streamlines form a 
saddle point pattern at which the flow angle takes all values between n/2 and n. 
Therefore, the stagnation point maps into the vertical line q = 0 in figure 3. Moving 
on to the boundary of the vortex, we know that the speed is constant (q  = q"), so 
after scaling by qv, the vertical line q = 1 is the image of the vortex boundary in the 
hodograph plane. The streamline at infinity corresponds to a single speed, q = qm, 
and direction, 6 = n, and so we see that an entire streamline is transformed into a 
point singularity in the hodograph plane. We defer a discussion of the nature of this 
singular tranformation for the moment and discuss boundary conditions. 

Since the stream function is arbitrary to within a constant, we will choose y = 0 on 
the boundary of the vortex without loss of generality. On the boundary A-S, we have 
u = 0. Additionally, figure 2 shows that dy = 0. Using this information along with 
equations (3.1), (3.4) and (3.5) we obtain that d y / d O  = 0 on 6 = n/2. On the segment 
from B-002 and CO-S, we have v = 0 and the streamlines have a single direction 
6 = n. It is also clear that here dx = 0. The use of the hodograph transformation 
then leads us to the condition that i3y/d6 = 0 on 0 = n, Having determined these 
boundary conditions, we can now investigate the nature of the solution near the 
stagnation point. An asymptotic analysis of Chaplygin's equation near q = 0 shows 
that y N c1 + c2q2 cos(26) + 0(q4) where c1 and c2 are constants. Hence, setting 
dy/dq = 0 on q = 0 is consistent. The problem to be solved in the hodograph plane 
is depicted in figure 3. 

3.4. The singularity at infinity 
We assume that the flow at infinity is subsonic since otherwise a shock-free flow 
field seems unlikely (Moore & Pullin 1987.) Assuming small disturbances at infinity 
and distorting the incompressible flow solution for a row of equal point vortices as 
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suggested by Prandtl-Glauert theory we find that the velocity potential is 

arctan[cot(nx/L) tanh(n(1 - M i ) ' / 2 y / L ) ] .  (3.9) 
r 4 = -  
2n 

To leading order, therefore, the stream function is given by 

r 
Y = E Y  

and the corresponding velocity field is 

r sinh(2n( 1 - ML)1/2y/L) u = -  
2L ~ 0 ~ h ( 2 n (  1 - M%)1/2y /L)  - COS(~~CX/L)  

(3.10) 

(3.11) 

and 

(3.12) 

In order to find the nature of the singularity in the hodograph plane we need to 
eliminate x and y from (3.10), (3.11) and (3.12). Using local quasi-polar coordinates 
(s,6) centred at the point at infinity in the hodograph plane defined by 

r ( I  - sin(2nxlL) 
V =  

2L ~ 0 ~ h ( 2 n ( l -  M&)'/2y/L)  - C O S ( ~ ~ X / L ) '  

e - x  
(1 - M$)'/* ' 

sei6 = ( q  - a) + i (3.13) 

we find that, for small s, the leading-order stream function is given by 

y = dlog(s). (3.14) 

This form of the singularity indicates that as s + 0, regardless of direction 6, all 
higher-order corrections to the logarithm go to zero. We have now posed the problem 
in the hodograph plane. Its solution y(q,O) is a two-parameter family depending on 
u = qm/qv, the location of the singularity in the hodograph plane and M ,  = q,/c,, 
the Mach number at infinity. 

4. The incompressible problem 
We begin by obtaining an analytical solution in the hodograph plane for the 

Moo = 0 limit of the single row. Setting M ,  = 0 reduces (3.8) to Laplace's equation 
so by using equation (3.14) we deduce that the correct form of the singular solution 
near the point at infinity is given by 

ys = log(q2 + a2 + 2aq cos e). (4.1) 

Now all that is necessary to complete the solution is to satisfy the boundary conditions. 
We apply the method of images to obtain the solution 

I. ' 0  = 10' [ (q2a2 + 1 + 2aq cos e)(q2a2 + 1 - 2aq cos e)  
(q2 + u2 + 2aq cos e)(q2 + a2 - 2aq cos e)  

This solution agrees with that given by Baker, Saffman & Sheffield (1976) who 
solved the same problem using the ideas of free-streamline theory. For comparison, 
we find a parametric representation for the vortex boundary centred at the origin. 
The non-dimensional coordinates of the boundary are given by 

(a - 1) sin 8 
(cos 8 + l)(a + 1) 

x = - 2 5  ban-' [ 
a (cos 0 + l)(a - 1) 
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FIGURE 4. Shape of vortex boundary for M ,  = 0, a = 0.4. Solid circles represent 
Baker et al. (1976) solution. Solid line is a plot of equations (4.3) and (4.4). 

(4.4) 
a2 - 1 

= a [lo&* + 1 + 2a cos e) - iog(a2 + 1 - 2~ cos e)] . 
As shown in figure 4, Baker et al. parameterize their solutions by the shape ratio 
R = P / 2 L  where P is the perimeter of the vortex and L is the seperation between 
the vortices. The circulation r about each vortex is then related to qv, the speed of 
the vortex boundary, by 

r = p q , .  

Furthermore, at large distances, the array looks like a vortex sheet of strength 2q,, 
where 

qm = ;r /L .  

Hence, conservation of circulation then requires that a = R = qm/qo,  the location of 
the singularity in the hodograph plane. Note that the shape ratio is restricted to be 
in the range 0 < R < 1 .  The limit R = 0 corresponds to an array of point vortices 
or a single vortex in unbounded fluid. The opposite limit R = 1 corresponds to a 
vortex sheet in which each vortex is pulled out longitudinally and squeezed sideways 
to lie along a length L of the x-axis. The significance of this solution for our problem 
is that we have obtained the zeroth-order solution of a perturbation solution (the 
Rayleigh-Jansen expansion) with M i  as the small parameter. An examination of the 
terms of the operator 2 ( y )  indicates that compressibility is introduced as regular 
corrections to the incompressible flow, indicating the possible existence of a regular 
perturbation expansion in powers of M,. Below we construct several terms of this 
solution. 

5. Perturbation solution 

valid when M ,  << 1. The problem is formulated as 
We construct an approximate series solution to the problem depicted in figure 3 

(5.1) q2(1 - P(Y - l)q2)yqq + q ( 1 -  P(Y - 3 ) q ’ ) ~ ~  + ( 1  - P(Y + l)q2)vee = 0, 
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J at 8 = $E and X. - = o  aw 
ae 

The solution we seek has the Rayleigh-Jansen form, 

W(q, 0) = y o  + M ~ Y I  + O(ML).  

(5.2) 

(5.3) 
As noted above, at zeroth order we have the incompressible solution which is given 
by equation (4.2). The second-order problem is given by 

(5.4) 

with the same boundary conditions as mentioned earlier for equation (5.1). Note that 
this system has many singular homogenous solutions. According to Prandtl-Glauert 
theory, we must ensure that the incompressible solution is the dominant singularity 
as the point at infinity is approached. The only regular homogeneous solution to this 
problem is the trivial solution w(q,O) = 0. Hence, finding a particular solution will 
then lead to a unique solution to this order. By inspection, a particular solution is 
given by 

but closer inspection of the above result shows that this is more singular than the 
incompressible solution. Hence, we find a complementary function to add to this 
particular solution such that the final result is regular at the point at infinity and that 
all boundary conditions are satisfied. This leads to a solution to O(M:):  

w ( q , e )  = w o  + M h l  (5 .5)  

where yo is given by equation (4.2) and the compressibility correction is given by 

(a4 - 1)(1 - q 2 / a 2 )  
(q2 + a2 + 2aq cos O)(q2 + a2 - 2aq cos 8) f 1 ( %  6) 

2 
w1= -q 

where 

and 
q2a2 + 1 - 2 c o d 2  

f 2 ( q ’  
= (q2a2 + 1 + 2aq cos 8)(q2a2 + 1 - 2aq cos 8)‘ 

It is essential that the solution above maintains the integrity of our original 
mapping. We check this by verifying that an integration of the distance traversed 
around a closed loop in the hodograph plane yields zero. Equivalently, referring to 
figure 2, we can show that the horizontal distance traversed from S to B,  XBS, is equal 
to that traversed going from co1 to 0 0 2 ,  xm. Equation (3.1) gives 
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for measuring horizontal distances in the hodograph plane. Hence, the distance from 
the centre of the vortex to the stagnation point, X B S ,  is given by 

This distance must be equal to the length of the streamline at infinity which is given by 

where s  ̂ and s* are local polar coordinates centred at the singularity in the hodograph 
plane. Expanding the above integrals in the Mach number, we find that our perturba- 
tion solution, equation ( 5 3 ,  satisfies the closure condition to O(M2)  automatically. 
With this solution valid for small M,, we proceed to discuss the solution at larger 
values of M ,  which is obtained numerically. 

6. Numerical method 

solve the following modified but equivalent problem : 
Since the nature of the singularity is known from our earlier analysis, we opted to 

where 

This particular singular form of ys is chosen for two reasons. The main advantage 
is that a local asymptotic analysis near the point at infinity shows that all other 
higher-order terms vanish in the limit as (q , e )  + (a,n). In addition, the top and 
bottom boundary conditions remain unchanged from those for tp. The remaining 
boundary conditions for the modified problem are 

7L avr 
ae 2 
- = 0, e =  -, 7L. 

The modified problem described above was solved numerically using second-order 
central differences on a fixed grid 

qi = (i - l )Aq,  

ei = 7L/2 + ( j  - i ) d e ,  

i = 1, ..., N ,  

j = 1, ..., M + 1, 
(6.4) 

where Aq = 1/(N - 1) and A0 = z / ( 2 M ) ,  and we put T,u~,~ = yr(qi,Bj). The finite 
difference form of equation (6.1) is given by 

Ci j + G((Wi,j+l + vij-1) = fi,j  (6.5) 
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RGURE 5. Decompostion of finite difference coefficient matrix. The cross and asterisks symbols 
emphasize the location of the corrected rows. Matrix size is ( N  . (M + 1) x N . ( M  + 1)). 

where fi,j = -2'(ys(qi, O j ) )  and the coefficients are defined as follows: 

A . .  a,j - - 4'(1- P(Y - 1)4;), 4 , j  = q(1- B(Y - 3)q?), Ci,j = (1 - P(Y + 1)qf). (6.6) 

At the top and bottom boundaries, where 8 = 7c and 8 = n / 2 ,  the derivative 
conditions are satisfied by adding fictitious points parallel to these boundaries and 
applying centred differences except for the point at (qi, 0,) = (a, 7c). We cannot use 
ghost points there because the forcing term in equation (6.1) is not defined. Hence, 
since we are solving for yr, which is the regular part of our solution, we found it 
sufficient to impose the derivative condition using forward differencing: 

where is the location of the singularity on the grid. 
The use of forward differencing at q = 0 also proved to be the most effective means 

for avoiding unphysical &dependence of the stagnation value. Implementation of the 
right-hand-side Dirichlet condition (yr( 1 , O )  = -ys( 1,Q)) is straightforward. Finally, 
the problem is reduced to one of linear algebra and solving a system A x = B. 
At this stage, the main difficulty is resolution. Figure 5 shows a schematic of the 
banded coefficient matrix A and its decomposition. If not for the special treatment 
of the singular point, A would have been amenable to transform methods, hence, 
we chose to use the capacitance matrix approach to change A appropriately. The 
decomposition of matrix A can be written as 

A = A ^  + U *  V * .  

The Woodbury formula, which is the block-matrix version of the Sherman-Morrison 
formula (Golub & Van Loan 1989), relates A-' to its decompostion as 

( R  + . p ) - 1  = A-1 - [R-' . (J . (1 + v* . i - 1  . u)-1 . Y *  . A-'3, (6.8) 

where the term (1 + Y T  R-lA U)-' is known as the capacitance matrix and it has 
dimensions ( p  x p )  where p is the number of corrected rows. Since we have Neuman? 
boundary conditions in the &direction, we apply a discrete cosine transform on A, 
reducing our problem to a set of k differential equations in q where k is the Fourier 
mode. At this stage, we choose to apply the Woodbury formula one more time so 
that at each mode we have a tridiagonal matrix. Note that the extra entry in the 
first row of each of the k-equations comes from our choice of forward differencing 
at q = 0. Making this extra effort increases our resolution compared to inverting the 
original banded matrix A. 

Note that in obtaining yr, we solve a linear system. This is not obvious at the 
outset. Indeed Moore & Pullin (1987) find residual nonlinearity in their formulation 
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Numerical Perturbation 
0.00 -3.6129 -3.6127 
0.20 -3.1786 -3.1784 
0.40 -2.2798 -2.2796 
0.80 -0.6199 -0.6197 
1.00 o.oO0o o.Ooo0 

TABLE 1. A comparison of the numerical and perturbation results at M ,  = 0.1 and a = 0.4 

of the compressible vortex pair problem in the form of a forced closure of the 
physical plane when reconstructed from the solution of the hodograph problem. This 
led us to expect an iterative solution procedure resulting from the non-linear nature 
of compressible flow problems, yet the transformation to the hodograph plane in 
this specific example has lead to an entirely linear problem. Our final solution is 
written as 

w(4,O) = w's(4,4 + W r ( 4 ,  6 ) .  
For M ,  <c 1, we compare our numerical solution with our perturbation solution 
for various values of q and 8 and successfully verify that the error is 0(M,)4. Table 
1 shows the results from one such test. 

7. Results 
We perform a parameter search to determine those solutions that are physically 

relevant. It is well known (Landau & Lifschitz 1959) that if the Jacobian of the 
hodograph transformation vanishes at any point, the solution will exhibit cuspidal 
behaviour corresponding to the onset of limit lines (Kuo & Sears 1954). Hence in our 
search of the parameter space (a,M,), we monitored the Jacobian for changes of sign. 
The search was done at a fixed value of a, stepping in the Mach number in increments 
of 0.001, on a ( N , M  + 1) = (500 x 128) grid, until a limit line was approached. Note 
that the computation was stopped at the first sight of a limit line and then the 
resolution was increased to ( N , M  + 1) = (loo0 x 256) and (2000 x 256) to ensure 
that the results are grid independent. The level of accuracy of these computations 
was up to six digits. The outcome of this investigation is depicted in figure 6 which 
summarizes the range of solutions found here. It is evident from the figure that 
transonic shock-free flows continuous in the (a, M,) parameter space can and do 
exist for our problem. 

7.1. Evacuated vortex core 

The dotted line in figure 6 is an upper boundary on the supersonic flow region. It 
actually corresponds to the limit when the pressure in the core of the vortex is reduced 
to zero. This evacuated core limit is a special case since our problem then reduces to 
a single-parameter family. Recalling the energy equation (2.2), we note the following: 

2 
1 2  c* 1 2  + 240 - + 24,. 

c,2 
Y - 1  Y - 1  
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0 1 2 3 4 5 6 I 8 

log (Ua) 
F~GURE 6.  The solid line represents the loci of sonic vortices, M ,  = 1.0. The dotted line indicates the 
evacuated vortex core limit, p v  = 0, o represents a change of sign of the Jacobian and 0 indicates 
no change of sign. 

Since the core is at vacuum, c, = 0, manipulating the above equation gives a 
relationship for M ,  in terms of a, 

M , = ( l - - - )  a2 112 . 

y-11-a2 (7.2) 

In relation to figure 6, this corresponds to the dotted line. We chose a as the parameter 
for this search and found that limit lines appeared quite early. Actually, the largest 
value attained before the Jacobian of the transformation changed sign was a = 0.0015 
corresponding to M ,  = 0.00335. Note that in order to achieve good resolution of the 
solution near q = 0, where we have a Neumann condition, we had to use fine grids. 
The evacuated vortex results were computed on ( N ,  M +  1) = (2000 x 128), (4000 x 128) 
and (4000 x 256) grids. At this point it was necessary to determine the validity of 
the two solutions for which there was no change of sign of the Jacobian. Hence, we 
searched for the minimum of the Jacobian and monitored its value as we increased 
the resolution. Figure 7 clearly shows that as the resolution is increased, the Jacobian 
tends to zero. This leads us to conclude that there exists no evacuated vortex solution 
for this problem free of limit lines. 

Following Moore & Pullin 1987, we find a leading-order approximation to the 
value of the stream function at the boundary of the evacuated vortex by the method 
of matched asymptotic expansions. The incompressible solution, Lamb (1932), is 
an outer solution which is matched to the solution for an isolated hollow vortex, 
Thompson (1972), giving 

I 
(7.3) 

In table 2 we compare the asymptotic result for the vortex boundary with that 
from our numerical solution. 
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Numerical Asymptotic 
0.225 -5.8946 -5.84959 
0.112 -8.6342 -8.62218 
0.045 -12.2892 -12.28734 
0.022 -15.0600 -15.0599 

0.00335 -22.6540 -22.6484 

TABLE 2. A comparison of the numerical and asymptotic results for the evacuated vortex 

-37.5 

-38.0 

-40.0 I I 1 I I I I 

-9.3 -9.2 -9.1 -9.0 -8.9 -8.8 -8.7 -8.6 

FIGURE 7. The absolute value of the minimum of the Jacobian is plotted versus different mesh 
sizes. M = 256 is kept constant as A q  is decreased. 

X l L  
FIGURE 8. Vortex boundaries and the position of the corresponding limit lines. Boundary A and 
D correspond to (a, Ma) = (0.1,0.215). Boundary B and 0 correspond to (a, M,) = (0.2,0.296). 
Boundary C and o correspond to (a, M,) = (0.25,0.343). 

7.2. Streamlines and limit lines 
While monitoring the Jacobian for a change of sign, we also noted the exact location 
on the grid at which the limit lines first appear. Figure 8 displays a few examples. We 
have plotted the boundary of the vortex and the position of the first occurrence of a 
limit line for a given (a,M,). 

In figure 9, we display the free boundaries for a progression of vortices ranging 
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from incompressible to subsonic to supersonic flow in the range of the (Mm,a)  space 
where no limit lines were detected. Note that for the free boundaries shown, the shape 
ratio was held fixed, a = 0.2. We see that as M ,  is increased, the vortices shrink in size 
and get closer together. It is intuitive to reason that the flow is being compressed but, 
actually, there exists some experimental evidence for such occurrences. M. G. Mungal, 
J. C. Hermanson & P. E. Dimotakis have produced some unpublished schlieren data 
which shows that the large-scale structures in a shear layer shrink in size as the flow 
velocity is increased. For photos and discussion refer to Dimotakis (1991). Note that 
the present analogy is only qualitative. 

In figure 10, we have plotted the streamlines of a transonic flow in the physical 
plane. The dotted line on the figure denotes the sonic line. Note that the sonic 
line is closer to the vortex boundary in the x-direction than in the y-direction. This 
phenomenon is explained by the fact that the flow in the x-direction is required to 
reach a stagnation point. 

7.3. Vortex geometry 
At this point, we return to figure 7 to identify the range of (a,  M,) for which solutions 
exist and survey this parameter space for detailed knowledge of the possible vortex 
boundary geometries. Figure 11 shows the relevant length scales in the physical plane. 

Note that bl and b2 are measured from the centre of the vortex. 1 (= L/2) measures 
the distance from the centre of the vortex to the stagnation point. We found that 
monitoring the aspect ratio of the vortex boundary, bl/b2, and the parameter b l / 1  was 
sufficient to give a complete overall view of all possible geometrical configurations 
that the vortices attain at different values of (a,  M,). 

Figure 12 shows that for a fixed value of a the vortices shrink and get closer 
together as the Mach number is increased. Note that bl/b2 = 1 is the limit of circular 
vortices. Figure 13 shows the extent of the vortex boundary stretched in the horizontal 
direction. It is evident that for a fixed a, as the Mach number is increased, the vortex 
boundary stretches out in the horizontal direction. 

When b l / l  = 0, we are at the point vortex solution whereas b l / 1  = 1 is the limit 
of the shear layer solution. Note that in both figure 12 and figure 13 the solutions 
were terminated at the first occurrence of a limit line. 



The hollow-core vortex arrav 15 
15.0 

12.3 

F -0.375994 

D -1.12798 
10.0 C -1.50398 

B -1.87997 
A -2.255 96 
9 -2.63196 

y 7.5 8 -3.00795 
7 -3.38394 
6 -3.75994 
5 -4.13593 
4 -4.51193 
3 -4.88792 
2 -5.26391 
1 -5.63991 

E -0.751988 

5.0 

2.5 

n v 

-12.5 -10.0 -7.5 -5.0 -2.5 0 2.5 5.0 
Y 

A 

FIGURE 10. Streamlines for a transonic shock-free flow. a = 0.4 and M,=0.48. Here, Mu = 1.4, 
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FIGURE 11. A description of the relevant length scales of the problem. 

8. Conclusion 
We have shown that it is possible to have steady flow of an infinite, periodic 

array of vortices in a compressible flow, and furthermore, that this array can exhibit 
transonic shock-free flow. It has also been illustrated that by taking special care 
in treating the singularity of the transformation at infinity, it is possible to reduce 
a compressible transonic flow to a strictly linear problem in the hodograph plane. 
The evacuated vortex core results indicate that such solutions can be constructed in 
the hodograph plane but that they all exhibit cuspidal behaviour which indicates the 
onset of limit lines. 

Further extensions of this work include investigation of the stability of this vortex 
array. We have shown that steady solutions exist and now we must determine whether 
these solutions are stable. Note that the vorticity in this problem was concentrated 
into vortex sheets on the surfaces of the vortices. It would be interesting to investigate 
the case where the vorticity is continously distributed throughout the whole flow. Also 
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of interest is to determine whether there exists a class of compressible free boundary 
problems that lend themselves to a linear system of equations in the hodograph plane. 
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